Lesson 8: Equal and Equivalent Cool Down: Decisions About Equivalence

Decide if the expressions in each pair are equivalent. Explain how you know.

1. $x+x+x+x$ and $4 x$
2. $5 x$ and $x+5$

Learning goals:
-Draw a diagram to represent the value of an expression for a given value of its variable.
-Explain (in writing) that some pairs of expressions are equal for one value of their variable but not for other values. -Justify (orally, in writing, and through other representations) whether two expressions are "equivalent".

Lesson 10: Different Options for Solving One Equation

Cool Down: Solve Two Equations

Solve each equation. Show or explain your method.

1. $8.88=4.44(x-7)$
2. $5\left(y+\frac{2}{5}\right)=-13$

Learning goals:
-Critique (orally and in writing) a given solution method for an equation of the form $p(x+q)=r$.
-Evaluate (orally) the usefulness of different approaches for solving a given equation of the form $p(x+q)=r$.
-Recognize that there are two common approaches for solving an equation of the form $p(x+q)=r$
(i.e., expanding using the distributive property or dividing each side by p).

Lesson 5: Solving Any Linear Equation
 Cool Down: Check It

Noah wanted to check his solution of $x=\frac{14}{5}$ for the equation $\frac{1}{2}(7 x-6)=6 x-10$. Substituting $\frac{14}{5}$ for x, he writes the following:

$$
\begin{aligned}
\frac{1}{2}\left(7\left(\frac{14}{5}\right)-6\right) & =6\left(\frac{14}{5}\right)-10 \\
\left(7\left(\frac{14}{5}\right)-6\right) & =12\left(\frac{14}{5}\right)-20 \\
5\left(7\left(\frac{14}{5}\right)-6\right) & =5\left(12\left(\frac{14}{5}\right)-20\right) \\
7 \cdot 14-6 & =12 \cdot 14-20 \\
98-6 & =168-20 \\
92 & =148
\end{aligned}
$$

Find the incorrect step in Noah's work and explain why it is incorrect.

Learning goals:
-Calculate a value that is a solution to a linear equation in one variable, and explain (orally) the steps used to solve. -Create an expression to represent a number puzzle, and justify (orally) that it is equivalent to another expression. -Justify (orally) that each step used in solving a linear equation maintains equality.

