Grade 6: Unit 6: Lesson 8 Equal and Equivalent

Learning Goal:

• Let's use diagrams to figure out which expressions are equivalent and which are just sometimes equal.

Activity Purpose

 Apply the properties of operations to determine if algebraic expressions are equivalent.

Approaches to Monitor

 Use tape diagrams, draw models, or show algebraic steps.

2 Identifying Equivalent Expressions

Here is a list of expressions. Find any pairs of expressions that are equivalent. If you get stuck,

Grade 7: Unit 6: Lesson 10 Different Options for Solving One Equation

Learning Goal:

• Let's think about which way is better when we solve equations with parentheses.

Activity Purpose

• Compare three methods for solving the same equation.

Approaches to Monitor

- Different approaches for different equations.
- Use of diagrams to support thinking.
- Application of distributive property.

Analyzing Solution Methods Three students each attempted to solve the equation 2(x - 9) = 10, but they got different solutions. Here is their work. Do you agree with any of their methods? Explain or show your reasoning. Noah's method: 2(x - 9) = 102(x - 9) + 9 = 10 + 9 Add 9 to each side 2x = 19 $2x \div 2 = 19 \div 2$ Divide each side by 2 $x = \frac{19}{2}$ Elena's method: She should of 2(x-9) = 10added 18 2x = 18 = 10Apply the distributive property 2 - 18 - 18 = 10 - 18 Subtract 18 from each side 2x = -8 $2x \div 2 = -8 \div 2$ Divide each side by 2 x = -4Andre's method: 2(x - 9) = 10He did it right. 2x - 18 = 10Apply the distributive property 2x - 18 + 18 = 10 + 18 Add 18 to each side 2x = 28 $2x \div 2 = 28 \div 2$ Divide each side by 2 x = 14Why did no ne divide by 2.

imagine

learning

Grade 8: Unit 4: Lesson 5 Solving Any Linear Equation

Learning Goal:

• Let's solve linear equations.

Activity Purpose

 Solve equations to investigate a number puzzle.

Approaches to Monitor

- Rewrite the expression in a simpler way after each instruction.
- Wait until the end to rewrite the expression.

2 A Puzzling Puzzle

Tyler says he invented a number puzzle. He asks Clare to pick a number, and then asks her to:

3x

3x-7

2.3x-7

6x-7-22

6x-29-6

- Triple the number.
- Subtract 7.
- Double the result.
- Subtract 22.
- Divide by 6.

Clare says she now has -3. Tyler says her original number must have been a 3. How did Tyler know that? Follow the same instructions starting with *x* instead of a number. Explain or show your reasoning for why the last expression means that the person started with a number 6 greater than they ended with.

imagine learning