Algebra 1: Unit 2: Lesson 7 Explaining Steps for Rewriting Equations

Learning Goal:

 Let's think about why some steps for rewriting equations are valid but other steps are not.

Activity Purpose

- Encounter an example where the given equation has no solutions and performing the familiar moves leads to an untrue statement.
- Come across an equation that is divided by a variable expression and make sense of why it leads to a false statement.

Approaches to Monitor

- Plug in a possible solution to test for correctness.
- Solve the equation and compare steps and rationale.

Discuss your observations with your group and be prepared to share your conclusions. If you get stuck, consider solving each equation.

```
Plug in 1.
                                                        1+6=4(1)+1-3(1)
   x + 6 = 4x + 1 - 3x
                          original equation
   x + 6 = 4x - 3x + 1
                        ✓apply the commutative property
   x + 6 = x + 1
                        ✓ combine like terms
                                                      X 7=2 X
       6 = 1
                           subtract x from each side
   2(5+x)-1=3x+9
                        original equation
   10 + 2x - 1 = 3x + 9
                         ✓ apply the distributive property
                         ✓ subtract 10 from each side
        2x - 1 = 3x - 1
2(0) = 3(0) 2x = 3x
                         ✓ add 1 to each side
                            divide each side by x?
                            isn't true but I think x would be 0.
```

Geometry: Unit 6: Lesson 5 Squares and Circles

Learning Goal:

Let's see how the distributive property can relate to equations of circles.

Activity Purpose

 Students practice squaring binomials to help them learn to rewrite perfect square trinomials.

Approaches to Monitor

 Using patterns from their distributive property work, recognize that if the constant term is the square of half the coefficient of x, then the expression is a perfect square trinomial.

Algebra 2: Unit 2: Lesson 11 Finding Intersections

Learning Goal:

Let's think about two polynomials at once.

Activity Purpose

Solve systems of equations involving quadratics.

Approaches to Monitor

 Solving without dividing by terms with an x in them, or using factoring to avoid missing potential solutions. For each pair of polynomials given, find all points of intersection of their graphs.

3.
$$m(x) = (x+7)(x-4)$$
 and $n(x) = (2x+5)(x-4)$

$$(x+7)(x-4) = (2x+5)(x-4)$$

$$(x+7)(x-4) = (2x+5)(x-4)$$

$$(x+7) = (2x+5)(x-4)$$

4.
$$p(x) = (x+1)(x-8)$$
 and $q(x) = (x+2)(x-4)$

$$\left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \end{array} \right)$$